skip to main content


Search for: All records

Creators/Authors contains: "Medeiros, Juliana S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nonstructural carbohydrates (NSCs) are carbon compounds that serve a large variety of purposes, which makes it hard to disentangle how their concentrations change in response to environmental stress. Soluble sugars can accumulate in plants as metabolic demand decreases, e.g., in response to drought or as seasonal temperatures decrease. Alternatively, actively allocating to NSCs could be beneficial in cold acclimation (CA) or in periods of increased aridity because soluble sugars serve non-metabolic functions as cryoprotectants and in osmoregulation. We used Juniperus virginiana L., a woody plant currently expanding its range, to investigate whether plants sourced from colder and more arid locations maintained higher concentrations of NSCs. We sourced three populations of J. virginiana from across an environmental gradient, and we compared these with the closely related Juniperus scopulorum Sarg. We grew the plants in a common garden in north-east OH, part of J. virginiana’s historic range. We exposed the plants to a drought treatment during the summer and then measured the NSC concentrations and cold-hardiness as the plants acclimated to colder temperatures and shorter days. We found that individuals originating from the warmer, more southern range edge were initially not as cold-hardy as plants from the other source populations and that they only reached similar hardiness after prolonged low temperatures. We did not find an effect of drought on NSCs, although this may be due to other traits conferring a high level of drought tolerance in J. virginiana. Across all plants, the NSC concentration increased over the CA period, specifically as sugars. Although the highest concentrations of sugars were found in plants from southern populations, the plants from colder environments maintained higher sugar-to-starch ratios. These results highlight the importance of NSCs in CA and that plants sourced from different climates showed different physiological responses to shortening days and low temperatures.

     
    more » « less
  2. Background and Aims The soil-borne pathogen Phytophthora cinnamomi causes a deadly plant disease. Phosphite is widely used as an effective treatment to protect plants from Phytophthora cinnamomi. Phosphite as a common fungicide might influence the composition of soil fungal communities. However, whether the belowground effects of phosphitemediated protections are direct or indirectly mediated through soil biota are unknown. Therefore, exploring belowground effects could contribute to the evaluation of the sustainability of phosphite use and tests hypotheses about direct versus indirect effects in pathogen response. Methods Our greenhouse pot experiment on Rhododendron species had either an after-pathogen or a before-pathogen use of phosphite to compare and evaluate plant and soil fungal responses to phosphite and the presence of an oomycete pathogen Phytophthora cinnamomi. The factorial experiment also included with and without pathogen and soil biota treatments, for a test of interactive effects. High throughput sequencing analyzed the soil fungal communities, and we measured the diversity, evenness and richness of soil fungi. Results Phosphite effectively increased survival of Rhododendron species. It altered the composition of soil fungal communities, and the timing of using phosphite determined the way in which the fungal communities changed. Trichoderma taxa also responded to soil phosphite and Phytophthora cinnamomi. Conclusions The benefits of antagonistic fungi such as Trichoderma are context-dependent, suggesting protection against pathogens depends on the timing of phosphite application. This study provides evidence that phosphite-mediated pathogen protection includes both direct benefits to plants and indirect effects mediated through the soil fungal community. 
    more » « less
    Free, publicly-accessible full text available June 19, 2024
  3. Guo, Xiao (Ed.)
    Eastern redcedar Juniperus virginiana is encroaching into new habitats, which will affect native ecosystems as this species competes with other plants for available resources, including water. We designed a greenhouse experiment to investigate changes in soil moisture content and rooting depths of two-year-old J . virginiana saplings growing with or without competition. We had four competition treatments: 1) none, 2) with a native tree ( Quercus stellata ), 3) with an invasive grass ( Bromus inermis ), and 4) with both Q . stellata and B . inermis . We measured soil moisture content over two years as well as root length, total biomass, relative water content, midday water potential, and mortality at the end of the experiment. When J . virginiana and B . inermis grew together, water depletion occurred at both 30–40 cm and 10–20 cm. Combined with root length results, we can infer that J . virginiana most likely took up water from the deeper layers whereas B . inermis used water from the top layers. We found a similar pattern of water depletion and uptake when J . virginiana grew with Q . stellata , indicating that J . virginiana took up water from the deeper layers and Q . stellata used water mostly from the top soil layers. When the three species grew together, we found root overlap between J . virginiana and Q . stellata . Despite the root overlap, our relative water content and water potential indicate that J . virginiana was not water stressed in any of the plant combinations. Regardless, J . virginiana saplings had less total biomass in treatments with B . inermis and we recorded a significantly higher mortality when J . virginiana grew with both competitors. Root overlap and partitioning can affect how J . virginiana perform and adapt to new competitors and can allow their co-existence with grasses and other woody species, which can facilitate J . virginiana encroachment into grasslands and woodlands. Our data also show that competition with both Q . stellata and B . inermis could limit establishment, regardless of water availability. 
    more » « less
  4. This article is a Commentary onZhouet al. (2021),229: 1481–1491.

     
    more » « less